吸収剤溶液の再生システム及び方法
专利摘要:
プロセスストリーム(22)から酸性成分を吸収するためのシステム(10)であって、該システムは、酸性成分を含んでなるプロセスストリーム(22);プロセスストリーム(22)から酸性成分の少なくとも一部を吸収する吸収剤溶液であって、アミン化合物又はアンモニアを含んでなる吸収剤溶液;内部部分(20a)を含んでなる吸収器(20)であって、吸収器の内部部分において、吸収剤溶液がプロセスストリーム(22)と接触する吸収器;及びプロセスストリーム(22)から酸性成分の少なくとも一部を吸収するための触媒(27)であって、吸収器(20)の内部部分(20a)の区域、吸収剤溶液、又はその組み合わせの少なくとも1つに存在する触媒を含んでなる。 公开号:JP2011506080A 申请号:JP2010538085 申请日:2008-12-09 公开日:2011-03-03 发明作者:ラセシ;アール コトダワラ;ナレシクマル;ビー ハンダガマ 申请人:アルストム テクノロジー リミテッドALSTOM Technology Ltd; IPC主号:B01D53-14
专利说明:
[0001] 本願は、2007年12月13日出願の米国仮出願第61/013,384号の優先権を主張するものであり、その記載のすべてを参照することにより本書に含める。] [0002] 本発明は、プロセスストリームから酸性成分を吸収するためのシステム及び方法に係る。さらに詳しくは、本発明は、プロセスストリームから二酸化炭素を吸収するためのシステム及び方法に係る。] 背景技術 [0003] 石炭燃焼炉からの排気ストリームのようなプロセスストリームは、しばしば、環境への導入前にプロセスストリームから除去されなければならない各種の成分を含有している。例えば、排気ストリームは、しばしば、排気ストリームを環境に排出する前に除去又は低減されなければならない二酸化炭素(CO2)及び硫化水素(H2S)のような酸性成分を含有する。] [0004] 多くのタイプのプロセスストリームにおいて認められる酸性成分の1例は二酸化炭素である。二酸化炭素(CO2)は多くの用途を有する。例えば、二酸化炭素は、飲料を炭酸化するため、魚介、肉類、鶏肉、ビスケット類、果物及び野菜を冷却、冷凍及び包装するために、及び乳製品の品質保証期間を延長するために使用される。他の用途としては、飲料水の処理、農薬としての用途、及び温室における空気添加剤があるが、これらに限定されない。最近では、二酸化炭素は、原油の二次回収(非常に高圧の二酸化炭素が多量に利用される)用の貴重な化学剤として認められている。] [0005] 二酸化炭素を得る方法の1つは、排気ストリーム(例えば、煙道ガスストリーム)のようなプロセスストリーム(二酸化炭素は、有機又は無機化学プロセスの副生物である)を精製することである。一般的には、高濃度の二酸化炭素を含有するプロセスストリームを、多段階で凝縮、精製し、ついで、蒸留して、プロダクトグレードの二酸化炭素を生成する。] 発明が解決しようとする課題 [0006] 上記用途に適する二酸化炭素(「プロダクトグレード二酸化炭素」として知られている)の量を増大させたいとの要望と共に、プロセスガスストリームを環境へ放出するに当たり、環境に放出される二酸化炭素の量を低減したいとの要望により、プロセスガスストリームから除去される二酸化炭素の量を増大させたいとの要求が増幅されている。処理プラントについては、放出されるプロセスガス中に存在する二酸化炭素の量又は濃度を低減させたいと要求が増大しつつある。同時に、処理プラントについては、時間、エネルギー及び費用のような資源を節約したいとの要求も増大している。本発明では、処理プラントに求められる多数の要求の1以上を、処理プラントから回収される二酸化炭素の量を増大させ、同時に、プロセスガスから二酸化炭素を除去するために必要なエネルギー量を低減させることによって緩和できる。本発明によれば、処理プラントから回収される二酸化炭素の量を増大させると共に、同時に、プロセスガスから二酸化炭素を除去するために必要なエネルギー量を低減することによって、処理プラントに関する多数の要求の1以上を緩和できる。] 課題を解決するための手段 [0007] ここに記載する態様によれば、プロセスストリームから酸性成分を吸収するためのシステムであって、該システムは、酸性成分を含んでなるプロセスストリーム;前記プロセスストリームから酸性成分の少なくとも一部を吸収する吸収剤溶液であって、アミン化合物又はアンモニアを含んでなる吸収剤溶液;内部部分を含んでなる吸収器であって、吸収器の内部部分において、前記吸収剤溶液が前記プロセスストリームと接触する吸収器;及び前記プロセスストリームから酸性成分の少なくとも一部を吸収するための触媒であって、前記吸収器の内部部分の区域、前記吸収剤溶液又はその組み合わせの少なくとも1つに存在する触媒を含んでなるシステムが提供される。] [0008] ここに記載する他の態様によれば、プロセスストリームから酸性成分を吸収するためのシステムであって、該システムは、リッチ吸収剤溶液を再生してリーン吸収剤溶液を形成するように設定された再生システムを含んでなり、前記再生システムは、内部部分を有する再生器;リッチ吸収剤溶液を前記内部部分に供給するための入口;前記再生器に流動的に結合されたリボイラーであって、前記リッチ吸収剤溶液を再生するために前記再生器にスチームを提供するリボイラー;及び前記リッチ吸収剤溶液中に存在する酸性成分の少なくとも一部を吸収する触媒であって、前記再生器の内部部分の区域、前記リッチ吸収剤溶液又はその組み合わせの少なくとも1つに存在する触媒を含んでなるシステムが提供される。] [0009] ここに記載する態様によれば、プロセスストリームから二酸化炭素を吸収する方法であって、該方法は、二酸化炭素を含んでなるプロセスストリームを吸収器に供給し、ここで、前記吸収器は内部部分を含んでなり;吸収剤溶液を前記吸収器に供給し、ここで、前記吸収剤溶液は、アミン化合物、アンモニア、又はその組み合わせを含んでなり;触媒を、前記吸収器の内部部分の区域、前記吸収剤溶液又はその組み合わせの少なくとも1つに供給し;及び前記プロセスストリームを、前記吸収剤溶液及び前記触媒と接触させ、これによって、前記プロセスストリームから二酸化炭素の少なくとも一部を吸収し、リッチ吸収剤溶液を生成することを含んでなる方法が提供される。] [0010] 上述の及び他の特長は、図面及び詳細な説明によって例示される。] 図面の簡単な説明 [0011] プロセスストリームから酸性成分を吸収し、これによって、除去するシステムの1具体例を示す概略図である。 プロセスストリームから酸性成分を吸収し、これによって、除去するシステムの他の具体例を示す概略図である。 プロセスストリームから酸性成分を吸収し、これによって、除去するシステムの他の具体例を示す概略図である。 リッチ吸収剤溶液を再生するシステムの1具体例を示す概略図である。 リッチ吸収剤溶液を再生するシステムの他の具体例を示す概略図である。] [0012] 図1は、プロセスストリームから酸性成分を吸収すること(これによって、酸性成分が低減されたストリーム及びリッチ吸収剤溶液が形成される)によって生成されたリッチ吸収剤溶液を再生するためのシステム10を示す。] 図1 [0013] システム10は吸収器20を包含しており、この吸収器は、プロセスストリーム22を受け取り、吸収器20内で行われるプロセスストリーム22と吸収剤溶液との相互作用を容易なものとする内部部分20aを有する。図1に示すように、プロセスストリーム22は、例えば、吸収器20の中央位置Aに配置されたプロセスストリーム入口24を介して、吸収器20に入り、吸収器20と通って移動する。しかし、プロセスストリーム22は、プロセスストリーム22からの酸性成分の吸収を可能にするいずれの位置においても吸収器20に入ることができ、例えば、プロセスストリーム入口24は吸収器20のいずれの位置にも配置されるものである。中央位置Aは、吸収器20を下方区域21a及び上方区域21bに分割する。] 図1 [0014] プロセスストリーム22は、天然ガスストリーム、合成ガスストリーム、精油所ガス又は蒸気ストリーム、油層のアウトプット、又は石炭、天然ガス又は他の燃料のような物質の燃焼によって発生されたストリームのような各種の液ストリーム又はガスストリームである。プロセスストリーム22の1例は、化石燃料のような燃料の燃焼を源として発生した煙道ガスストリームである。燃料の例としては、合成ガス、精油所ガス、天然ガス、石炭等であるが、これらに限定されない。プロセスストリーム22の源又はタイプに応じて、酸性成分はガス状、液状又は粒状である。] [0015] プロセスストリーム22は、粒状物質、酸素、水蒸気、及び酸性成分を含む各種の成分を含有する(これらに限定されない)。1具体例では、プロセスストリーム22は、二酸化炭素を含む(これに限定されない)いくつかの酸性成分を含有する。プロセスストリーム22が吸収器20に入ると、プロセスストリームは、酸化イオウ(SOx)及び酸化窒素(NOx)と共に、粒状物質を除去するように処理される。しかし、方法はシステム毎に異なり、従って、このような処理は、プロセスストリーム22が吸収器20を通過した後に又は通過することなく行われる。] [0016] 1具体例では、プロセスストリーム22は、熱交換器23(熱をプロセスストリーム22から熱移動流体60に移動させることによってプロセスストリームの冷却を容易なものとする)を通過する。熱移動流体60はシステム10の他の区域に移動され、ここで、システムの効率を改善するために熱が利用される(後述する)。] [0017] 1具体例では、熱交換器23において、プロセスストリーム22は、例えば、約149−204℃の範囲の温度から、例えば、38−149℃の温度に冷却される。他の具体例では、熱交換器23において、プロセスストリーム22は、例えば、149−204℃の範囲の温度から、例えば、38−66℃の温度に冷却される。1具体例では、熱交換器23を通過した後、プロセスストリーム22中に存在する酸性成分の濃度は約1−20モル%であり、プロセスストリーム中に存在する水蒸気の濃度は約1−50モル%である。] [0018] 吸収器20は、プロセスストリーム22からの酸性成分の吸収及び除去を容易なものとする吸収剤溶液を使用する。1例では、吸収剤溶液は化学溶媒及び水を含んでなり、化学溶媒としては、例えば、窒素系溶媒(例えば、アミン化合物及び特に1級、2級及び3級のアルカノールアミン;1級及び2級アミン;立体障害アミン;重度の立体障害をもつ2級アミノエーテルアルコール)が含まれる。一般的に使用される化学溶媒の例としては、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、ジイソプロパノールアミン(DIPA)、N-メチルエタノールアミン、トリエタノールアミン(TEA)、N-メチルジエタノールアミン(MDEA)、ピペラジン、N-メチルピペラジン(MP)、N-ヒドロキシエチルピペラジン(HEP)、2-アミノ-2-メチル-1-プロパノール(AMP)、2-(2-アミノエトキシ)エタノール(ジエチレングリコールアミン又はDEGAとも呼ばれる)、2-(2-tert-ブチルアミノプロポキシ)エタノール、2-(2-tert-ブチルアミノエトキシ)エタノール(TBEE)、2-(2-tert-アミルアミノエトキシ)エタノール、2-(2-イソプロピルアミノプロポキシ)エタノール、2-(2-(1-メチル-1-エチルプロピルアミノ)エトキ)シエタノール等がある(これらに限定されない)。上記溶媒は、単独で又は組み合わせて、及び他の助溶媒、添加剤(例えば、消泡剤、緩衝剤、金属塩等、又は腐食防止剤)と共に又は使用することなく、使用される。腐食防止剤の例としては、チオモルホリン、ジチアン及びチオキサン(チオモルホリン、ジチアン及びチオキサンの炭素は、独立して、H、C1-8アルキル、C7-12アルカリル、C6-10アリール及び/又はC3-10シクロアルキル置換基を有する)からなる群から選ばれる複素環化合物;チオ尿素‐アミン‐ホルムアルデヒドポリマー及び銅(II)塩と組み合わせて使用されるポリマー;+4又は5価のバナジウムを含有するアニオン;及び他の公知の腐食防止剤がある(これらに限定されない)。] [0019] 他の具体例では、吸収剤溶液はアンモニアを含む。例えば、吸収剤溶液は、アンモニア、水、及び吸収剤溶液の総質量基準で0−50質量%の濃度範囲のアンモニウム/炭酸塩系の塩を含むことができ、アンモニア濃度は、吸収剤溶液の総質量基準で1−50質量%の範囲で変動する。] [0020] 1具体例では、吸収器20に存在する吸収剤溶液は、「リーン」吸収剤溶液及び/又は「セミ−リーン」吸収剤溶液と呼ばれる。リーン及びセミ−リーン吸収剤溶液は、プロセスストリーム22から酸性成分を吸収でき、例えば、吸収剤溶液は、必ずしも全てが飽和されてはいない、又はフル吸収能力ではないものである。ここに記載するように、リーン吸収剤溶液は、セミ−リーン吸収剤溶液よりも大きい酸性成分吸収能力を有する。後述する1具体例では、リーン及び/又はセミ−リーン吸収剤溶液はシステム10によって提供される。1具体例では、システムにより提供されるリーン及び/又はセミ−リーン吸収剤溶液36を補足するために、補充吸収剤溶液25が提供される。] [0021] プロセスストリーム22からの酸性成分の吸収は、吸収剤溶液とプロセスストリーム22との相互作用(接触)によって起こる。プロセスストリームと吸収剤溶液との間の相互作用は、吸収器20において、各種の様式で行われる。例えば、1具体例では、プロセスストリーム22はプロセスストリーム入口24を介して吸収器20に入り、吸収器の全長を上方に移動し、一方、吸収剤溶液は、プロセスストリーム22が入った位置よりも上方の位置で吸収器20に入り、プロセスストリーム22と向流方向で流下する。] [0022] 吸収器20におけるプロセスストリーム22と吸収剤溶液との間の相互作用によって、補充吸収剤溶液25及びリーン及び/又はセミ−リーン吸収剤溶液36のいずれか又は両方からリッチ吸収剤溶液及びプロセスストリーム22が生成される。相互作用後、プロセスストリーム22は酸性成分の量が低減されており、リッチ吸収剤溶液26は、プロセスストリームから吸収された酸性成分で飽和されている。1具体例では、リッチ吸収剤溶液26は二酸化炭素によって飽和されている。] [0023] 1具体例では、システム10は触媒27を包含する。プロセスストリーム22中に存在する酸性成分は触媒27によって吸収される。触媒の例としては、無水炭酸及び例えば、ゼオライト系触媒及び遷移金属系触媒(パラジウム、白金、ルテニウム)のような無機物質系触媒があるが、これらに限定されない。遷移金属系触媒及びゼオライト系触媒を、無水炭酸と組み合わせて使用できる。] [0024] 触媒27を1以上の酵素(図示していない)と組み合わせても使用できる。酵素としては、α、β、γ、δ及びεクラスの炭酸アンヒドラーゼ、サイトゾル炭酸アンヒドラーゼ(例えば、CA1、CA2、CA3、CA7及びCA13)、及びミトコンドリア炭酸アンヒドラーゼ(例えば、CA5A及びCA5B)があるが、これらに限定されない。] [0025] 1具体例では、触媒27は、吸収器20の内部部分20aの少なくとも1区域内、吸収器20に供給される吸収剤溶液(例えば、吸収器20に提供されるリーン及び/又はセミ−リーン吸収剤溶液36及び/又は補充吸収剤溶液25)中、又はそれらの組み合わせに存在する。] [0026] 1例では、触媒27は吸収器20に供給される吸収剤溶液中に存在する。図2に示すように、触媒27は、吸収器20でのCO2吸収以前に吸収剤溶液(例えば、アミン溶液)に添加される。例えば、図2では、触媒27は、補充吸収剤溶液25を、触媒容器29を通過させることによって、補充吸収剤溶液25に供給されている。しかし、リーン及び/又はセミ−リーン吸収剤溶液36を触媒容器29に供給することもできる。また、吸収器20の内部部分20aに導入する前に、補充吸収剤溶液25及びリーン及び/又はセミ−リーン吸収剤溶液36を触媒容器29に供給することもできる。] 図2 [0027] 触媒容器29は、触媒と共に、吸収剤溶液を受け取り、吸収剤溶液への触媒の配合を容易なものとする各種の容器である。触媒27の補充吸収剤溶液25又はリーン及び/又はセミ−リーン吸収剤溶液36への配合は、例えば、空気スパージャー、オーガー又は他の回転装置等の使用を含む各種の様式で行われる。] [0028] さらに図2を参照すれば、触媒27を補充吸収剤溶液25に配合した後、触媒含有吸収剤溶液31が形成される。1具体例では、触媒27は、例えば、約0.5−50mg/Lの範囲の濃度で、補充吸収剤溶液25中に存在する。他の具体例では、触媒27は、例えば、約2−15mg/Lの範囲の濃度、例えば、約0.1−5lb/lbの液/ガス(L/G)比で、補充吸収剤溶液25中に存在する。] 図2 [0029] 1具体例では、触媒含有吸収剤溶液31は、入口31aを介して、吸収器20の内部部分20aに供給される。図2では、入口31aが、吸収器20の上方部分21b内で、プロセスストリーム入口24の上方に位置するよう示されているが、入口31aは吸収器20のいずれの位置にも配置されるものである。触媒含有吸収剤溶液31が吸収器20の内部部分20aに供給されると、吸収剤溶液はプロセスストリーム22と作用し、プロセスストリーム22中に存在する酸性成分が、触媒含有吸収剤溶液31中に存在するアミン系化合物又はアンモニアと共に、触媒によって吸収される。プロセスストリーム22と触媒含有吸収剤溶液31との間の相互作用の後、リッチ吸収剤溶液が生成され、触媒を含有するリッチ吸収剤溶液26として吸収器20から排出される。] 図2 [0030] なお図2を参照すると、他の具体例では、入口31aを介して、触媒含有吸収剤溶液31を吸収器20の内部部分20aに供給している。触媒含有吸収剤溶液31の内部部分20aへの導入時、触媒27は、吸収器20の内部部分20a内に配置した充填カラム21cに不動化される。充填カラムにおける基剤(図示していない)の存在によって、触媒が充填カラムに不動化される。基材は有機又は無機の化学剤であり、各種の公知の方法によって充填カラム21cに適用される。基材との反応によって、触媒27は充填カラム21cに不動化される。] 図2 [0031] 1具体例では、充填カラム21cは、ランダム又は構造化充填された小さい固形付形物で構成された床又は一連の床であり、この上を、液及び蒸気が向流式に流動する。他の具体例では、触媒含有吸収剤溶液31は酵素も含有し、酵素も充填カラム21cに不動化される。触媒の少なくとも一部はリッチ吸収剤溶液26と一緒に移動する。] [0032] 他の具体例では、図2Aに示すように、触媒27は、吸収器20の内部部分20aの区域に存在する。詳述すれば、触媒27は、吸収器20の内部部分20aに存在する充填カラム21cの少なくとも1区域に不動化されている(上述のように)。1具体例では、充填カラム21cにおける触媒27の密度は、例えば、0.5−20ピコモル/cm2の範囲である。他の具体例では、充填カラム21cにおける触媒27の密度は、例えば、0.5−10ピコモル/cm2の範囲である。触媒27は、吸収剤溶液中に存在するアミン化合物及び/又はアンモニアと共に、プロセスストリーム22から酸性成分を吸収し、これによって、除去して、リッチ吸収剤溶液26を形成する。この具体例では、触媒27は、リッチ吸収剤溶液26と一緒に、システム10の他の位置には移動しない。] [0033] 図1−2Aに示すように、プロセスストリーム22から酸性成分の一部を吸収するために触媒27を使用するか又はしないかにかかわらず、リッチ吸収剤溶液26は、吸収器20の下方区域21aに落下し、ここで、更なる処理のため除去され、一方、酸性成分の量が低減されたプロセスストリーム22は、吸収器20を通過し、出口28aを介して、上方区域21bから酸性成分減少ストリーム28として排出される。1具体例では、酸性成分減少ストリーム28は、例えば、49−93℃の範囲の温度を有する。1具体例では、酸性成分減少ストリーム28中に存在する酸性成分の濃度は、例えば、約0−15モル%の範囲内である。1具体例では、酸性成分減少ストリーム中に存在する二酸化炭素の濃度は、例えば、約0−15モル%の範囲内である。] 図1 [0034] 再度図1を参照すると、リッチ吸収剤溶液26は、一般的に34で示される再生システムに到達する以前に、約24−160 psiの圧力でポンプ30を通って、熱交換器32に進行する。再生システム34は、内部部分34b、入口34c、及び再生器34aに流動的に結合されたリボイラー34dを有する再生器34aを包含する(これに限定されない)。ここで使用するように、用語「流動的に結合された」とは、例えば、パイプ、導管、コンベヤー、ワイヤ等によって、装置が、例えば、直接的に(2つの装置の間に介在物なし)又は間接的に(2つの装置の間に介在物あり)、他の装置と連通又は結合されていることを意味する。] 図1 [0035] 再生器(「ストリッパー」とも呼ばれる)34aは、リッチ吸収剤溶液26を再生して、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液36の1つを形成する。後述する1具体例では、再生器34aにおいて再生されたリーン及び/又はセミ−リーン吸収剤溶液36を吸収器20に供給する。] [0036] さらに図1を参照すると、リッチ吸収剤溶液26は、再生器34aの中央位置Bに位置する入口34cで再生器34aに入る。しかし、リッチ吸収剤溶液26は、リッチ吸収剤溶液26の再生を容易なものとする各種の位置で再生器34aに入ることができ、例えば、入口34cを再生器34aのいかなる位置にも設置できる。] 図1 [0037] 再生器34aに入った後、リッチ吸収剤溶液26は、リボイラー34dによって生成されたスチーム40の対向流と相互作用(接触)する。1具体例によれば、再生器34aは、例えば、約24−160 psiの範囲の圧力を有しており、例えば、約38−204℃の温度範囲、特に、例えば、約93−193℃の温度範囲で作動される。] [0038] 再生器34aでは、スチーム40はリッチ吸収剤溶液26を再生し、これによって、酸性成分リッチのストリーム44と共に、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液36を生成する。リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液36の少なくとも一部は、上述のように、プロセスストリーム22からの酸性成分の更なる吸収及び除去のために吸収器20に移動される。] [0039] 1具体例では、再生システム34も触媒27を含む。リッチ吸収剤溶液26をスチーム40にて再生することに加えて、リッチ吸収剤溶液26は、触媒27にて酸性成分の少なくとも一部を吸収することによって再生される。上述のように、触媒27は、上述の1以上の酵素(図示していない)と組み合わせても使用される。] [0040] 触媒27は、再生器34aの内部部分34bの少なくとも1区域内、リッチ吸収剤溶液26又はそれらの組み合わせ内に存在する。1具体例では、触媒27は、再生器34aに供給される吸収剤溶液内に存在する。リッチ吸収剤溶液26における触媒27の存在は、上述のように、吸収器20における触媒の存在又は吸収器20において利用される吸収剤溶液によるものである。1具体例では、触媒27は、例えば、約0.5−50mg/Lの範囲の濃度で、リッチ吸収剤溶液26中に存在する。他の具体例では、触媒27は、例えば、約2−15mg/Lの範囲の濃度、例えば、約0.1−5lb/lbの液/ガス(L/G)比で、リッチ吸収剤溶液26中に存在する。] [0041] 他の具体例では、図3に示すように、触媒27は、リッチ吸収剤溶液26を、触媒容器29を通過させることによって、触媒含有リッチ吸収剤溶液33を形成することによって、リッチ吸収剤溶液26に供給される。1具体例では、触媒27は、例えば、約0.5−50mg/Lの範囲の濃度で、触媒含有リッチ吸収剤溶液33中に存在する。他の具体例では、触媒27は、例えば、約2−15mg/Lの範囲の濃度、例えば、約0.1−5lb/lbの液/ガス(L/G)比で、触媒含有リッチ吸収剤溶液33中に存在する。] 図3 [0042] 1具体例では、触媒含有リッチ吸収剤溶液33は、入口34cを介して、再生器34aの内部部分34bに供給される。図3では、入口34cが、再生器34aの上方区域35b内に位置するよう示されているが、入口34cは再生器34aのいずれの位置にも配置されるものである。触媒含有リッチ吸収剤溶液33が再生器34aの内部部分34bに供給されると、吸収剤溶液はスチーム40と作用して、再生し、リーン又はセミ−リーン吸収剤溶液36を提供する。触媒及び酸性成分が存在する触媒含有リッチ吸収剤溶液33とスチーム40との相互作用の結果、酸性成分の吸収が生ずる。酸性成分および触媒27及びスチーム40の相互作用の後、リーン又はセミ−リーン吸収剤溶液36が生成する。] [0043] 他の具体例では、図3Aに示すように、触媒27は、再生器34aの内部部分34bの区域に存在する。詳述すれば、触媒27は、再生器34aの内部部分34bに存在する充填カラム34eの少なくとも1区域に不動化されている。1具体例では、充填カラム34eにおける触媒27の密度は、例えば、0.5−20ピコモル/cm2の範囲である。他の具体例では、充填カラム34eにおける触媒27の密度は、例えば、0.5−10ピコモル/cm2の範囲である。触媒27は、再生器34aに供給されたリッチ吸収剤溶液26から酸性成分を吸収して、リーン及び/又はセミ−リーン吸収剤溶液36を形成する。触媒27は、リッチ吸収剤溶液26及び再生器34aの内部部分34bの区域の両方に存在できる。] [0044] システム10は、吸収器20において使用される第1の触媒及び再生器34aにおいて使用される第2の触媒の両方として触媒27を包含する。システム10は、再生器34aで使用される触媒を使用することなく、吸収器20で使用される触媒27のみを使用することもできる。さらに、システム10は、再生器34aのみで触媒27を使用することができる。] [0045] 再度図1を参照すると、再生システム34において触媒27を使用するか否かにかかわらず、1具体例では、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液36は、吸収器20に入る前に、一連の処理を受ける。1具体例では、図1に示すように、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液36は、入口48を介して吸収器20に入る前に、熱交換器32及び熱交換器46を通過する。リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液36は、例えば、熱交換器46(熱を熱移動流体、例えば、熱移動流体60に移動させる)を通過されることによって冷却される。上述のように、熱移動流体60は、その熱を利用し、例えば、生成されるエネルギーを節約及び/又は再利用することによってシステム10の効率を改善するために、システム10内の他の部位に移動される。] 図1 [0046] リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液36は、吸収器20に入る前に、例えば、ポンプ、弁等の他の装置又は機構を通過する。図1では、入口48はプロセスストリーム入口24の下方の位置にあるが、入口48は吸収器20のいかなる位置にも設置される。] [0047] 酸性成分リッチストリーム44について、図1では、酸性成分リッチストリーム44は再生器34aから排出され、一般的に50で示される圧縮システムを通過する。1具体例では、圧縮システム50は、ミキサー57と共に、1以上の凝縮器52及びフラッシュ冷却器54、1以上のコンプレッサー56を包含する。圧縮システム50は、酸性成分リッチストリーム44の凝縮、冷却及び圧縮を容易に行い、他の用途又は保存のための酸性成分ストリーム70を生成するものである。1具体例では、第1のフラッシュ冷却器54における温度は、例えば、約38−66℃の範囲であり、圧力低下は、例えば、約5−10psiの範囲である。酸性成分リッチストリーム44を、第1のフラッシュ冷却器54から第1のコンプレッサー56に移し、ここで、例えば、490 psiで圧縮し、ついで、第2のフラッシュ冷却器54において、例えば、約38−66℃の範囲の温度に冷却する。酸性成分リッチストリーム44を、第3のフラッシュ冷却器54において、例えば、約38−66℃の範囲の温度に冷却し、圧力低下は、例えば、約5−10psiである。] [0048] 図1では、圧縮システム50は特別な装置及び機構を有しているが、圧縮システム50は、システム10が利用される用途にとって有用な各種の態様で設定される。また、システム10は圧縮システム50を含まなくてもよく、代わりに、酸性成分リッチストリーム44を他の用途のために保存するものであってもよい。] 図1 [0049] 図1に示す1具体例では、凝縮器52及び/又はフラッシュ冷却器54からの熱移動流体60は、上述のように、リッチ吸収剤溶液26の再生において利用されるように、リボイラー34dに移動される。] 図1 [0050] 1具体例では、リッチ吸収剤溶液26を再生するためのスチーム40を生成するために、リボイラーは、システム10の熱交換器において熱移動流体60に移された熱(エネルギー)を利用できる。熱移動流体に移された熱の利用は、リボイラー34dを駆動し、これによって、スチーム40を生成するために外部源からの使用が要求されるエネルギーの量を低減又は排除する。リボイラー34dを駆動するために使用される外部エネルギー量を低減又は排除することによって、システム10にかかる、例えば、労働力、費用、時間、電力のような資源をより有効に使用でき、例えば、低減できる。] [0051] 図1に示されるように、1具体例では、酸性成分が低減されたストリーム28を吸収器20から排出し、熱交換器58に提供する。熱交換器58は、吸収器20に流動的に結合されているため、酸性成分が低減されたストリーム28を受け入れる。1具体例では、酸性成分が低減されたストリーム28は、例えば、約54−93℃の範囲の温度を有する。他の具体例では、酸性成分が低減されたストリーム28は、例えば、約49−71℃の範囲の温度を有する。他の具体例では、酸性成分が低減されたストリーム28は、例えば、約54−71℃の範囲の温度を有する。酸性成分が低減されたストリーム28から取り出される熱(エネルギー)は、酸性成分が低減されたストリーム28を、熱交換器58を通過させることによって、熱移動流体60に移される。1具体例では、熱移動流体60は、例えば、ボイラー供給水又は熱交換器において使用される各種の他の流体又は化学剤である。例えば、1具体例では、熱移動流体60をリボイラー34dに供給することによって、リッチ吸収剤溶液26を再生するために熱移動流体60を使用できる。] 図1 [0052] 1具体例では、熱交換器58を、熱移動流体60のリボイラー34dへの移動を容易なものとする機構60aに流動的に結合する。1具体例では、機構60aは、導管、配管、コンベヤー等を含む(これらに限定されない)、熱移動流体60のリボイラー34dへの移動を容易なものとする各種の機構である。] [0053] 1具体例では、熱交換器58は、吸収器20の内部位置(図示していない)に配置される。例えば、熱交換器58は、吸収器20の内部部分20a内の位置に配置される。1具体例では、熱交換器58は、吸収器20の下方区域21a、吸収器20の上方区域21b、又はその組み合わせから選ばれる位置にある。] [0054] 他の具体例では、複数個の熱交換器58が吸収器20の内部部分20a内に配置される(図示していない)。例えば、3個の熱交換器58が吸収器20内に配置され、例えば、第1の熱交換器が吸収器20の下方区域21aに配置され、第2の熱交換器が、熱交換器58の一部が吸収器20の下方区域21a内にあり、熱交換器58の少なくとも一部が吸収器20の上方区域21b内にあるように配置され、及び第3の熱交換器が吸収器20の上方区域21bに配置される。各種の数の熱交換器58を吸収器20に設置できる。] [0055] 1具体例では、各熱交換器58は、熱移動流体60を移動させ、これによって、熱移動流体60を吸収剤溶液26の再生に利用するように、機構60aに流動的に結合される。上述のように、機構60aは、熱交換器58からリボイラー34dへの熱移動流体60の移動を容易なものとする。] [0056] 1具体例では、吸収器20は、例えば、吸収器の外部位置における少なくとも1つの熱交換器58と共に、吸収器20の内部部分20aにおける1以上の熱交換器58を包含できる(図示していない)。例えば、熱交換器58の1つが吸収器20の内部部分20aにあり、プロセスストリームを受け取る。他の具体例では、複数個の熱交換器58が吸収器20の内部部分20aに存在できる(図示していない)。いずれの例においても、吸収器20は、外部に配置された熱交換器58に流動的に結合されている。外部に配置された熱交換器58は、流動的に結合する吸収器20から、酸性成分が低減された吸収剤溶液28の吸収器20からの排出部位において、酸性成分が低減された吸収剤溶液28を受け取る。各種の数の熱交換器を、吸収器の内部及び外部に、吸収器20に流動的に結合できる。] [0057] 他の具体例では、熱交換器58は外部的に吸収器20に設置され、吸収器20からプロセスストリーム22を受け取る。1以上の熱交換器を外部的に吸収器に設置し、プロセスストリーム22又はその一部を受け取るようにしてもよい。] [0058] リッチ吸収剤溶液を再生するためにリボイラー34d(図1)によって要求される、又はシステム10の外部の源によってリボイラー34dに付与されるエネルギー量が、熱移動流体60によってリボイラー34dに移動される上述の熱によって置き換えられる又は低減されることは評価されなければならない。ここに記載するように、熱移動流体60は、システム10で利用される熱交換器の1以上(例えば、熱交換器23、32、46、58)からリボイラー34dに移動される。] 図1 [0059] 1具体例では、吸収器20の外部位置に配置された熱交換器を介して、酸性成分が低減されたストリーム28から熱移動流体60に移される熱は、例えば、リボイラーの負荷の約10−50%である。1具体例では、吸収器20の内部部分20aにある唯1つの熱交換器58を介して移される熱は、例えば、リボイラーの負荷の約10−30%であり、吸収器20の内部に1以上の熱交換器が配置され、各熱交換器58が、例えば、リボイラーの負荷の約1−20%、さらに詳しくは、リボイラーの負荷の約5−15%を提供し、蓄積熱移動、すなわち、熱交換器58全体からの熱移動が、例えば、リボイラーの負荷の約1−50%を提供する場合に匹敵する。] [0060] 吸収器20の内部部分20aに配置された少なくとも1つの熱交換器58を包含し、少なくとも1つの熱交換器58において、外部から吸収器20に流動的に結合された酸性成分が低減されたストリーム28を受け取るシステム10において、リボイラー34dに移動される熱は、例えば、リボイラーの負荷の約1−50%を提供し、さらに詳しくは、例えば、リボイラーの負荷の約5−40%を提供する。] [0061] プロセスストリーム22を受け取り、吸収器20の外部位置において流動的に結合されている少なくとも1つの熱交換器58を包含するシステム10において、リボイラー34dに移動される熱は、例えば、リボイラーの負荷の約1−50%を提供し、さらに詳しくは、例えば、リボイラーの負荷の約10−30%を提供する。1以上の熱交換器が吸収器20の外部位置において流動的に結合される場合には、各熱交換器58においてプロセスストリーム22から熱移動流体60に移動される熱は、例えば、リボイラーの負荷の約1−20%を提供し、さらに詳しくは、例えば、リボイラーの負荷の約5−15%を提供し、蓄積熱移動、すなわち、熱交換器62全体からの熱移動はリボイラーの負荷の約1−50%を提供する。] [0062] 例えば、酸性成分が低減されたストリーム28を受け取る熱交換器58と共に、プロセスストリーム22を受け取り、吸収器の外部位置に配置された少なくとも1つの熱交換器からの熱を含むシステム10内で移動される熱は、例えば、リボイラーの負荷の約1−50%を提供し、さらに詳しくは、例えば、リボイラーの負荷の約5−40%を提供する。] [0063] 熱移動流体60を介して1以上の凝縮器52からリボイラー34dに移動される熱は、例えば、リボイラーの負荷の約10−60%を提供する。他の具体例では、1以上の凝縮器52から移動される熱は、例えば、リボイラーの負荷の約10−50%を提供する。] [0064] 熱移動流体60を介してフラッシュ冷却器54からリボイラー34dに移動される熱は、例えば、リボイラーの負荷の約1−10%を提供できる。他の具体例では、各フラッシュ冷却器54から移動される熱は、例えば、リボイラーの負荷の約1−5%を提供する。] [0065] コンプレッサー56からの熱もリボイラー34dに移動される。] [0066] 上述のシステム10によってプロセスストリーム22から、例えば、二酸化炭素のような酸性成分を吸収する方法は、プロセスストリーム22を吸収器20に供給することを包含する。吸収器20の内部部分20aにおいて、プロセスストリーム22は吸収器20に供給される吸収剤溶液と相互作用する。] [0067] 1以上の具体例では、吸収剤溶液は、リーン及び/又はセミ−リーン吸収剤溶液36である。他の具体例では、吸収剤溶液は補充吸収剤溶液25である。他の具体例では、吸収剤溶液は、補充吸収剤溶液25及びリーン及び/又はセミ−リーン吸収剤溶液36である。1具体例では、吸収剤溶液は、アミン化合物、アンモニア、又はその組み合わせを含み、これらはプロセスストリーム22からの酸性成分の吸収を容易なものとする。] [0068] 1具体例では、吸収器20の内部部分20aの少なくとも1区域、吸収剤溶液、又はその組み合わせに、触媒27が供給される。触媒27は、例えば、補充吸収剤溶液25及びリーン及び/又はセミ−リーン吸収剤溶液36のいずれか又は両方が吸収器20に供給される前に、補充吸収剤溶液25及びリーン及び/又はセミ−リーン吸収剤溶液36のいずれか又は両方を、例えば、触媒容器29を通過させることによって供給される。他の具体例では、触媒27は、例えば、上述のように、触媒27を充填カラム21cに不動化させることによって、吸収器20の内部部分21aに供給される。] [0069] プロセスストリーム22内に存在する酸性成分は、吸収剤溶液(例えば、補充吸収剤溶液25及びリーン及び/又はセミ−リーン吸収剤溶液36のいずれか又は両方)と相互作用する。相互作用は化学反応を容易なものとし、酸性成分を吸収して、リッチ吸収剤溶液26及び酸性成分が低減されたストリーム28を生成する。] [0070] 上述のように、リッチ吸収剤溶液26は再生器34aに提供される。再生器34aには触媒27が供給されうる。触媒27は、例えば、リッチ吸収剤溶液26を、触媒容器29を通過させることによって、又は再生器34aの内部部分34bの1区域に触媒を不動化することによって再生器34aに提供される。] [0071] ここに記載のシステム及び方法の非限定的な例を以下に示す。他に特定しない限り、温度は摂氏(℃)であり及び百分率はモル%である。] [0072] 実施例1:触媒を使用しない場合のリボイラーのエネルギー 上述のように、1具体例において、プロセスストリーム22を吸収器20に供給した。吸収器20において、プロセスストリーム22は、例えば、モノエタノールアミンのようなアミン化合物を含有する吸収剤溶液と相互作用して、例えば、約13モル%の二酸化炭素を含有し、例えば、約149℃の温度を有する酸性成分が低減されたストリーム28及びリッチ吸収剤溶液26を生成した。リッチ吸収剤溶液26を、例えば、約155 psiの圧力で作動する再生器34aに供給した。] [0073] 実施例2:吸収剤溶液中で触媒を使用した場合のリボイラーのエネルギー プロセスストリーム22を吸収器20に供給した。吸収器20において、プロセスストリーム22は、例えば、モノエタノールアミンのようなアミン化合物を含有する吸収剤溶液と相互作用して、例えば、約13モル%の二酸化炭素を含有し、例えば、約149℃の温度を有する酸性成分が低減されたストリーム28及びリッチ吸収剤溶液26を生成した。触媒、例えば、炭酸アンヒドラーゼを吸収剤溶液に添加した。吸収剤溶液は、例えば、約3mg/mlの触媒濃度を有する。リッチ吸収剤溶液26を、例えば、約155 psiの圧力で作動する再生器34aに供給した。] [0074] 実施例3:吸収器の充填カラムに不動化した触媒を使用した場合のリボイラーのエネルギー プロセスストリーム22を吸収器20に供給した。吸収器20において、プロセスストリーム22は、例えば、モノエタノールアミンのようなアミン化合物を含有する吸収剤溶液と相互作用して、例えば、約13モル%の二酸化炭素を含有し、例えば、約149℃の温度を有する酸性成分が低減されたストリーム28及びリッチ吸収剤溶液26を生成した。触媒、例えば、炭酸アンヒドラーゼを、例えば、約2ピコモル/cm2の濃度で、吸収器20の充填カラム21cに不動化させた。リッチ吸収剤溶液26を、例えば、約155 psiの圧力で作動する再生器34aに供給した。] [0075] 実施例1、2、3における他のエネルギー要求量及びパラメーターと共に、リボイラーの負荷を表1に示す。] [0076] 他の指示しない限り、ここに記載する全ての範囲は、上限及び下限及び中間の全ての値において包括的かつ合体できるものである。用語「第1」、「第2」等は、順序、量、又重要性を表わすものではなく、むしろ、1つの要素を他の要素から区別するために使用している。「約」を伴う全ての数値は、他に指示しない限り、正確な数値の包括的なものである。] 実施例 [0077] 本発明を各種の例示的具体例を参照して記述したが、本発明の精神を逸脱することなく、多くの変形が加えられること及びその要素を均等物によって置換できることは、当業者によって理解されるであろう。さらに、その必須の範囲を逸脱することなく、本発明の教示に特別な状況又は物質を適合するように多くの変更をなすことができる。従って、本発明は、本発明を実施するための最良の形態として開示した特別の具体例に限定されず、本発明は、特許請求の範囲内に属する全ての具体例を包含するものである。]
权利要求:
請求項1 プロセスストリームから酸性成分を吸収するためのシステムであって、該システムは、酸性成分を含んでなるプロセスストリーム;前記プロセスストリームから酸性成分の少なくとも一部を吸収する吸収剤溶液であって、アミン化合物又はアンモニアを含んでなる吸収剤溶液;内部部分を含んでなる吸収器であって、吸収器の内部部分において、前記吸収剤溶液が前記プロセスストリームと接触する吸収器;及び前記プロセスストリームから酸性成分の少なくとも一部を吸収するための触媒であって、前記吸収器の内部部分の区域、前記吸収剤溶液又はその組み合わせの少なくとも1つに存在する触媒を含んでなる、システム。 請求項2 プロセスストリームが、化石燃料の燃焼によって発生された煙道ガスストリームである、請求項1記載のシステム。 請求項3 酸性成分が二酸化炭素である、請求項1記載のシステム。 請求項4 吸収剤溶液がアミン化合物を含んでなり、前記アミン化合物が、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、ジイソプロパノールアミン(DIPA)、N-メチルエタノールアミン、トリエタノールアミン(TEA)、N-メチルジエタノールアミン(MDEA)、ピペラジン、N-メチルピペラジン(MP)、N-ヒドロキシエチルピペラジン(HEP)、2-アミノ-2-メチル-1-プロパノール(AMP)、2-(2-アミノエトキシ)エタノール、2-(2-tert-ブチルアミノプロポキシ)エタノール、2-(2-tert-ブチルアミノエトキシ)エタノール(TBEE)、2-(2-tert-アミルアミノエトキシ)エタノール、2-(2-イソプロピルアミノプロポキシ)エタノール、2-(2-(1-メチル-1-エチルプロピルアミノ)エトキ)シエタノールからなる群から選ばれるものである、請求項1記載のシステム。 請求項5 吸収剤溶液がアンモニアを含んでなるものである、請求項1記載のシステム。 請求項6 触媒が、ゼオライト系触媒、遷移金属系触媒、炭酸アンヒドラーゼ又はその組み合わせから選ばれるものである、請求項1記載のシステム。 請求項7 触媒が炭酸アンヒドラーゼである、請求項1記載のシステム。 請求項8 触媒を1以上の酵素と組み合わせて使用し、前記酵素が、α、β、γ、δ及びεクラスの炭酸アンヒドラーゼ、サイトゾル炭酸アンヒドラーゼ、CA2、CA3、ミトコンドリア炭酸アンヒドラーゼ、及びその組み合わせから選ばれるものである、請求項1記載のシステム。 請求項9 触媒が吸収剤溶液に存在しており、前記触媒が0.5−50mg/Lの濃度で存在する、請求項1記載のシステム。 請求項10 触媒が2−15mg/Lの濃度で存在する、請求項9記載のシステム。 請求項11 触媒が吸収器の内部部分の少なくとも1区域に存在しており、触媒が0.5−20ピコモル/cm2の密度を有する、請求項1記載のシステム。 請求項12 触媒の密度が0.5−10ピコモル/cm2である、請求項11記載のシステム。 請求項13 さらに、吸収器に流動的に結合された再生器を含んでなり、前記再生器が、吸収器によって生成されたリッチ吸収剤溶液を受け取るために内部部分を有するものである、請求項1記載のシステム。 請求項14 さらに、再生器の内部部分の少なくとも1区域に存在する第2の触媒を含んでなる、請求項13記載のシステム。 請求項15 さらに、リッチ吸収剤溶液に存在する第2の触媒を含んでなる、請求項13記載のシステム。 請求項16 さらに、再生器に流動的に結合されたリボイラーを含んでなる、請求項13記載のシステム。 請求項17 さらに、吸収器に流動的に結合された少なくとも1個の熱交換器を含んでなり、前記熱交換器は熱をリボイラーに移動させる、請求項16記載のシステム。 請求項18 再生器が圧縮システムに流動的に結合されており、前記圧縮システムはリボイラーに流動的に結合されており、前記圧縮システムからの熱をリボイラーに移動させる、請求項16記載のシステム。 請求項19 プロセスストリームから酸性成分を吸収するためのシステムであって、該システムは、リッチ吸収剤溶液を再生してリーン吸収剤溶液を形成するように設定された再生システムを含んでなり、ここで、再生システムは、内部部分を有する再生器;リッチ吸収剤溶液を前記内部部分に供給するための入口;前記再生器に流動的に結合されたリボイラーであって、前記リッチ吸収剤溶液を再生するために前記再生器にスチームを提供するリボイラー;及び前記リッチ吸収剤溶液中に存在する酸性成分の少なくとも一部を吸収する触媒であって、前記再生器の内部部分の区域、前記リッチ吸収剤溶液又はその組み合わせの少なくとも1つに存在する触媒を含んでなる、システム。 請求項20 触媒が炭酸アンヒドラーゼである、請求項19記載のシステム。 請求項21 触媒が再生器の内部部分の少なくとも1区域に存在しており、前記触媒が0.5−20ピコモル/cm2の密度を有する、請求項19記載のシステム。 請求項22 触媒の密度が0.5−10ピコモル/cm2である、請求項21記載のシステム。 請求項23 触媒が吸収剤溶液に存在しており、前記触媒が0.5−50mg/Lの濃度で存在する、請求項19記載のシステム。 請求項24 触媒が2−15mg/Lの濃度で存在する、請求項23記載のシステム。 請求項25 プロセスストリームから二酸化炭素を吸収する方法であって、該方法は、二酸化炭素を含んでなるプロセスストリームを吸収器に供給し、ここで、前記吸収器は内部部分を含んでなり;吸収剤溶液を前記吸収器に供給し、ここで、前記吸収剤溶液は、アミン化合物、アンモニア、又はその組み合わせを含んでなり;触媒を、前記吸収器の内部部分の区域、前記吸収剤溶液又はその組み合わせの少なくとも1つに供給し;及び前記プロセスストリームを、前記吸収剤溶液及び前記触媒と接触させ、これによって、前記プロセスストリームから二酸化炭素の少なくとも一部を吸収し、リッチ吸収剤溶液を生成することを含んでなる、方法。 請求項26 吸収剤溶液が、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、ジイソプロパノールアミン(DIPA)、N-メチルエタノールアミン、トリエタノールアミン(TEA)、N-メチルジエタノールアミン(MDEA)、ピペラジン、N-メチルピペラジン(MP)、N-ヒドロキシエチルピペラジン(HEP)、2-アミノ-2-メチル-1-プロパノール(AMP)、2-(2-アミノエトキシ)エタノール、2-(2-tert-ブチルアミノプロポキシ)エタノール、2-(2-tert-ブチルアミノエトキシ)エタノール(TBEE)、2-(2-tert-アミルアミノエトキシ)エタノール、2-(2-イソプロピルアミノプロポキシ)エタノール、2-(2-(1-メチル-1-エチルプロピルアミノ)エトキ)シエタノールからなる群から選ばれるアミン化合物を含んでなるものである、請求項25記載の方法。 請求項27 触媒が炭酸アンヒドラーゼである、請求項25記載の方法。 請求項28 さらに、リッチ吸収剤溶液を、吸収器に流動的に結合された再生器に提供することを含んでなり、前記再生器が内部部分を有するものである、請求項25記載の方法。 請求項29 さらに、第2の触媒を、再生器の内部部分の少なくとも1つの区域に供給することを含んでなる、請求項28記載の方法。 請求項30 さらに、第2の触媒をリッチ吸収剤溶液に供給することを含んでなる、請求項28記載の方法。
类似技术:
公开号 | 公开日 | 专利标题 US8771403B2|2014-07-08|Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream ES2754801T3|2020-04-20|Proceso de lavado de CO2 con una alcanolamina US8388855B2|2013-03-05|Polyamine/alkali salt blends for carbon dioxide removal from gas streams AU2007253430B2|2011-03-10|Carbon dioxide absorbent requiring less regeneration energy AU2009230804B2|2011-07-14|CO2 recovery apparatus and CO2 recovery method RU2402373C2|2010-10-27|Способ рекуперации двуокиси углерода CA2819904C|2015-11-17|Method and absorbent composition for recovering a gaseous component from a gas stream US8318117B2|2012-11-27|Absorption medium and method for removing sour gases from fluid streams, in particular from flue gases CA2491163C|2009-06-09|Improved split flow process and apparatus RU2230599C2|2004-06-20|Способ извлечения аминосоединения из сопровождающего обезуглероженного выпускного газа в колонне абсорбции US7374734B2|2008-05-20|Absorbing agent and method for eliminating acid gases from fluids KR101847805B1|2018-04-12|가스 스트림과 액체 스트림의 접촉 EP1998870B1|2012-02-29|Verfahren zum inkontaktbringen zweier phasen, deren kontakt von wärmeentwicklung begleitet ist US4364915A|1982-12-21|Process for recovery of carbon dioxide from flue gas ES2525428T3|2014-12-22|Retirada de dióxido de carbono de gases de escape de combustión US9498748B2|2016-11-22|Removal of acid gases from a fluid flow by means of reduced coabsorption of hydrocarbons and oxygen CA2311199C|2004-04-27|Carbon dioxide recovery with composite amine blends DE19753903C2|2002-04-25|Verfahren zur Entfernung von CO¶2¶ und Schwefelverbindungen aus technischen Gasen, insbesondere aus Erdgas und Roh-Synthesegas EP2405989B1|2015-07-22|Method and plant for amine emission control JP4634384B2|2011-02-23|吸収液、co2又はh2s又はその双方の除去方法及び装置 CN101481093B|2012-10-10|从气流中回收co2的方法 KR100464840B1|2005-01-05|산소 함유 혼합물로부터 이산화탄소를 회수하는 방법 KR0123030B1|1997-11-12|연소배기가스중의 이산화탄소를 제거하는 방법 US6939393B2|2005-09-06|Method for neutralizing a stream of fluid, and washing liquid for use in one such method US9346008B2|2016-05-24|Method and an apparatus for sweetening and dehydrating a hydrocarbon gas, in particular a natural gas
同族专利:
公开号 | 公开日 MX2010005800A|2010-08-04| IL205950D0|2010-11-30| US20090155889A1|2009-06-18| EP2222387A1|2010-09-01| WO2009076327A1|2009-06-18| RU2483784C2|2013-06-10| CA2708310A1|2009-06-18| RU2010128904A|2012-01-20| AU2008335282B2|2012-01-12| CN101896247A|2010-11-24| CA2708310C|2013-06-25| ZA201003619B|2011-08-31| KR20100092050A|2010-08-19| AU2008335282A1|2009-06-18|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JPS55102421A|1978-11-16|1980-08-05|Giammarco Giuseppe|Method of absorbing and removing carbon dioxide andor hydrogen sulfide by solution| JPH05277342A|1992-04-02|1993-10-26|Mitsubishi Heavy Ind Ltd|炭酸ガス吸収液| JP2006518662A|2003-02-14|2006-08-17|ビーエーエスエフアクチェンゲゼルシャフトBASFAktiengesellschaft|流体から酸性ガスを除去するための吸収剤および方法| US20060213224A1|2005-02-07|2006-09-28|Co2 Solution Inc.|Process and installation for the fractionation of air into specific gases| JP2010530802A|2007-06-22|2010-09-16|コモンウェルスサイエンティフィックアンドインダストリアルリサーチオーガニゼイション|ガスストリームからアンモニア溶液へco2を移動するための改善された方法|JP2012020221A|2010-07-14|2012-02-02|Osaka Gas Co Ltd|炭酸ガスの吸収方法| JP2013519514A|2010-02-19|2013-05-30|コモンウェルスサイエンティフィックアンドインダストリアルリサーチオーガニゼーション|蒸気抑制添加剤| KR20170015485A|2014-06-05|2017-02-08|시옹후이 웨이|연도 가스의 탈황 탈질용 공정 및 장치|US3851041A|1966-02-01|1974-11-26|A Eickmeyer|Method for removing acid gases from gaseous mixtures| US4411136A|1972-05-12|1983-10-25|Funk Harald F|System for treating and recovering energy from exhaust gases| US5010726A|1988-09-28|1991-04-30|Westinghouse Electric Corp.|System and method for efficiently generating power in a solid fuel gas turbine| US5326929A|1992-02-19|1994-07-05|Advanced Extraction Technologies, Inc.|Absorption process for hydrogen and ethylene recovery| EP0830196A4|1995-06-07|1999-03-24|Michael C Trachtenberg|Enzyme systems for gas processing| GB9711439D0|1997-06-04|1997-07-30|Rogers Peter A|Bioreactor for dioxide management| AU5568099A|1998-08-18|2000-03-14|United States Department Of Energy|Method and apparatus for extracting and sequestering carbon dioxide| DE10016079A1|2000-03-31|2001-10-04|Alstom Power Nv|Verfahren zum Entfernen von Kohlendioxid aus dem Abgas einer Gasturbinenanlage sowie Vorrichtung zur Durchführung des Verfahrens| JP2003034503A|2001-07-19|2003-02-07|Mitsubishi Heavy Ind Ltd|合成ガスの製造方法およびメタノールの製造方法| US6547854B1|2001-09-25|2003-04-15|The United States Of America As Represented By The United States Department Of Energy|Amine enriched solid sorbents for carbon dioxide capture| WO2003029618A1|2001-10-01|2003-04-10|Alstom Technology Ltd.|Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken| US7132090B2|2003-05-02|2006-11-07|General Motors Corporation|Sequestration of carbon dioxide| US7056482B2|2003-06-12|2006-06-06|Cansolv Technologies Inc.|Method for recovery of CO2 from gas streams| CA2554395C|2005-07-27|2013-10-08|Carmen Parent|Gas purification apparatus and process using biofiltration and enzymatic reactions| US8080090B2|2007-02-16|2011-12-20|Air Liquide Process & Construction, Inc.|Process for feed gas cooling in reboiler during CO2 separation|US8182577B2|2007-10-22|2012-05-22|Alstom Technology Ltd|Multi-stage CO2 removal system and method for processing a flue gas stream| US7862788B2|2007-12-05|2011-01-04|Alstom Technology Ltd|Promoter enhanced chilled ammonia based system and method for removal of CO2 from flue gas stream| KR20110087273A|2008-09-29|2011-08-02|아커민 인코퍼레이티드|이산화탄소의 가속화 포집 방법| US7846240B2|2008-10-02|2010-12-07|Alstom Technology Ltd|Chilled ammonia based CO2 capture system with water wash system| AU2009307050A1|2008-10-23|2010-04-29|Commonwealth Scientific & Industrial Research Organisation|Use of enzyme catalysts in CO2 PCC processes| US8404027B2|2008-11-04|2013-03-26|Alstom Technology Ltd|Reabsorber for ammonia stripper offgas| US20100209997A1|2009-01-09|2010-08-19|Codexis, Inc.|Carbonic anhydrase polypeptides and uses thereof| DE102009017228A1|2009-04-09|2010-10-14|Linde-Kca-Dresden Gmbh|Verfahren und Vorrichtung zur Behandlung von Rauchgasen| CN102548643B|2009-08-04|2014-10-22|二氧化碳处理公司|使用包含生物催化剂的微粒捕获co2的方法| US8309047B2|2009-09-15|2012-11-13|Alstom Technology Ltd|Method and system for removal of carbon dioxide from a process gas| US8518156B2|2009-09-21|2013-08-27|Alstom Technology Ltd|Method and system for regenerating a solution used in a wash vessel| US8425849B2|2009-10-19|2013-04-23|Mitsubishi Heavy Industries, Ltd.|Reclaiming apparatus| EP2322265A1|2009-11-12|2011-05-18|Alstom Technology Ltd|Flue gas treatment system| JP5351728B2|2009-12-03|2013-11-27|三菱重工業株式会社|Co2回収装置およびco2回収方法| JP5371734B2|2009-12-25|2013-12-18|三菱重工業株式会社|Co2回収装置およびco2回収方法| KR20130018269A|2010-03-30|2013-02-20|더 유니버서티 오브 레지나|유입 가스 스트림으로부터 가스상 성분을 분리하기 위한 촉매적 방법 및 장치| US8328911B2|2010-06-21|2012-12-11|The University Of Kentucky Research Foundation|Method for removing CO2 from coal-fired power plant flue gas using ammonia as the scrubbing solution, with a chemical additive for reducing NH3 losses, coupled with a membrane for concentrating the CO2 stream to the gas stripper| WO2012003277A2|2010-06-30|2012-01-05|Codexis, Inc.|Highly stable beta-class carbonic anhydrases useful in carbon capture systems| CA2803959A1|2010-06-30|2012-01-05|Codexis, Inc.|Chemically modified carbonic anhydrases useful in carbon capture systems| US8420364B2|2010-06-30|2013-04-16|Codexis, Inc.|Highly stable beta-class carbonic anhydrases useful in carbon capture systems| US8728209B2|2010-09-13|2014-05-20|Alstom Technology Ltd|Method and system for reducing energy requirements of a CO2 capture system| US8623307B2|2010-09-14|2014-01-07|Alstom Technology Ltd.|Process gas treatment system| KR101724157B1|2010-09-17|2017-04-06|한국전력공사|혼합가스 중 산성가스를 분리하는 분리장치 및 분리방법| US8940261B2|2010-09-30|2015-01-27|The University Of Kentucky Research Foundation|Contaminant-tolerant solvent and stripping chemical and process for using same for carbon capture from combustion gases| US20130203155A1|2010-10-29|2013-08-08|Co2 Solutions Inc.|Enzyme enhanced co2 capture and desorption processes| US8329128B2|2011-02-01|2012-12-11|Alstom Technology Ltd|Gas treatment process and system| US9028784B2|2011-02-15|2015-05-12|Alstom Technology Ltd|Process and system for cleaning a gas stream| DE102011013318A1|2011-03-07|2012-09-13|Hochschule Heilbronn|Verfahren zur Regeneration von mit CO2 beladenen aminhaltigen Waschlösungen bei der Sauergaswäsche| US8623314B2|2011-07-01|2014-01-07|Alstom Technology Ltd|Chilled ammonia based CO2 capture system with ammonia recovery and processes of use| EP2753414A1|2011-09-07|2014-07-16|Carbon Engineering Limited Partnership|Target gas capture| JP5759566B2|2011-11-29|2015-08-05|関西電力株式会社|Co2脱離触媒| US20130175004A1|2012-01-06|2013-07-11|Alstom Technology Ltd|Gas treatment system with a heat exchanger for reduction of chiller energy consumption| US9162177B2|2012-01-25|2015-10-20|Alstom Technology Ltd|Ammonia capturing by CO2 product liquid in water wash liquid| KR101333617B1|2012-02-09|2013-11-27|한국에너지기술연구원|고체 아민을 함침한 제올라이트 수착제의 제조방법 및 그 방법에 의해 제조된 수착제| US8864879B2|2012-03-30|2014-10-21|Jalal Askander|System for recovery of ammonia from lean solution in a chilled ammonia process utilizing residual flue gas| ES2663915T3|2012-09-25|2018-04-17|Alfa Laval Corporate Ab|Combined cleaning system and method of reducing SOx and NOx in exhaust gases from a combustion engine| WO2014090328A1|2012-12-14|2014-06-19|Statoil Petroleum As|Absorption/desorption of acidic components such as e.g. co2 by use of at least one catalyst| WO2014090327A1|2012-12-14|2014-06-19|Statoil Petoleum As|Novel enzymes for enhanced gas absorption| US9447996B2|2013-01-15|2016-09-20|General Electric Technology Gmbh|Carbon dioxide removal system using absorption refrigeration| US8986640B1|2014-01-07|2015-03-24|Alstom Technology Ltd|System and method for recovering ammonia from a chilled ammonia process| US9579602B2|2015-02-26|2017-02-28|University Of Wyoming|Catalytic CO2 desorption for ethanolamine based CO2 capture technologies| CA2886708A1|2015-03-30|2016-09-30|Co2 Solutions Inc.|Intensification of biocatalytic gas absorption|
法律状态:
2011-07-08| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110708 | 2011-07-20| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 | 2011-10-20| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111019 | 2011-10-27| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111026 | 2012-04-04| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120403 | 2012-08-04| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120803 | 2012-09-28| A911| Transfer to examiner for re-examination before appeal (zenchi)|Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120927 | 2012-12-03| A912| Re-examination (zenchi) completed and case transferred to appeal board|Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20121130 | 2013-04-16| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130415 | 2013-04-22| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130419 | 2013-09-07| RD03| Notification of appointment of power of attorney|Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130906 | 2013-10-11| RD04| Notification of resignation of power of attorney|Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131010 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|